Lijst met elektronenaffiniteiten
In onderstaande lijst is de elektronenaffiniteit van de elementen en een aantal meer-atomige deeltjes weergegeven.
Elementen
† In 2025 bleek dat elektronaffiniteit ook gevoelig is voor kwantum-effecten,[1] wat een herziening van de met een "†" gemerkte waarden tot gevolg kan hebben. De herziening heeft een verlaging met ongeveer 20 μeV (2 J/mol) tot gevolg.
| Z | Element | Naam | Elektronaffiniteit (eV) | Elektronaffiniteit (kJ/mol) | Referentie |
|---|---|---|---|---|---|
| 1 | 1H | Waterstof | 0,754 195(19) | 72,769(2) | [2] |
| 1 | 2H | Deuterium | 0,754 67(4) | 72,814(4) | [3] |
| 2 | He | Helium | −0,5(2) | −48(20) | Geschat[4] |
| 3 | Li | Lithium | 0,618 049(22) | 59,632 6(21) | [5] |
| 4 | Be | Beryllium | −0,5(2) | −48(20) | Geschat[4] |
| 5 | B | Boor | 0,279 723(25) | 26,989(3) | [6] |
| 6 | 12C | Koolstof | 1,262 122 6(11) | 121,776 3(1) | [6] |
| 6 | 13C | Koolstof | 1,262 113 6(12) | 121,775 5(2) | [7] |
| 7 | N | Stikstof | −0,07 | −6,8 | [4] |
| 8 | 16O | Zuurstof | 1,461 112 97(9) | 140,975 970(9) | [8] |
| 8 | 17O | Zuurstof | 1,461 108(4) | 140,975 5(3) | [9] |
| 8 | 18O | Zuurstof | 1,461 105(3) | 140,975 2(3) | [9] |
| 9 | F | Fluor | 3,401 189 8(24) | 328,164 9(3) | [10][11] |
| 10 | Ne | Neon | −1,2(2) | −116(19) | Geschat[4] |
| 11 | Na | Natrium | 0,547 926(25) | 52,867(3) | [12] |
| 12 | Mg | Magnesium | −0,4(2) | −40(19) | Geschat[4] |
| 13 | Al | Aluminium | 0,432 83(5) | 41,762(5) | [13] |
| 14 | Si | Silicium | 1,389 521 2(8) | 134,068 4(1) | [14] |
| 15 | P | Fosfor | 0,746 609(11) | 72,037(1) | [15] |
| 16 | 32S | Zwavel | 2,077 104 2(6) | 200,410 1(1) | [14] |
| 16 | 34S | Zwavel | 2,077 104 5(12) | 200,410 1(2) | [16] |
| 17 | Cl | Chloor | 3,612 725(28) | 348,575(3) | [17] |
| 18 | Ar | Argon | −1,0(2) | −96(20) | Geschat[4] |
| 19 | K | Kalium | 0,501 459(13) | 48,383(2) | [18] |
| 20 | Ca | Calcium | 0,024 55(10) | 2,37(1) | [19] |
| 21 | Sc | Scandium | 0,179 380(23)† | 17,307 6(22) | [20] |
| 22 | Ti | Titanium | 0,075 54(5)† | 7,289(5) | [21] |
| 23 | V | Vanadium | 0,527 66(20)† | 50,911(20) | [22] |
| 24 | Cr | Chroom | 0,675 928(27)† | 65,217 2(26) | [20] |
| 25 | Mn | Mangaan | −0,5(2) | −50(19) | Geschat[4] |
| 26 | Fe | IJzer | 0,153 236(35)† | 14,785(4) | [23] |
| 27 | Co | Kobalt | 0,662 255(47)† | 63,897 9(45) | [24] |
| 28 | Ni | Nikkel | 1,157 16(12) | 111,65(2) | [25] |
| 29 | Cu | Koper | 1,235 78(4) | 119,235(4) | [26] |
| 30 | Zn | Zink | −0,6(2) | −58(20) | Geschat[4] |
| 31 | Ga | Gallium | 0,301 166(15)† | 29,058 1(15) | [27] |
| 32 | Ge | Germanium | 1,232 676 4(13) | 118,935 2(2) | [28] |
| 33 | 75As | Arseen | 0,804 486(3) | 77,621 1(3) | [1] |
| 34 | Se | Seleen | 2,020 604 7(12) | 194,958 7(2) | [29] |
| 35 | Br | Broom | 3,363 588(3) | 324,536 9(3) | [10] |
| 36 | Kr | Krypton | −1,0(2) | −96(20) | Geschat[4] |
| 37 | Rb | Rubidium | 0,485 916(21) | 46,884(3) | [30] |
| 38 | Sr | Strontium | 0,052 06(6) | 5,023(6) | [31] |
| 39 | Y | Yttrium | 0,311 29(22)† | 30,035(21) | [20] |
| 40 | Zr | Zirkonium | 0,433 28(9)† | 41,806(9) | [32] |
| 41 | Nb | Niobium | 0,917 40(7)† | 88,516(7) | [33] |
| 42 | Mo | Molybdeen | 0,747 23(8)† | 72,097(8) | [20] |
| 43 | Tc | Technetium | 0,55(20) | 53(20) | Geschat[34] |
| 44 | Ru | Ruthenium | 1,046 27(2)† | 100,950(3) | [20] |
| 45 | Rh | Rodium | 1,142 89(20) | 110,27(2) | [25] |
| 46 | Pd | Palladium | 0,562 14(12) | 54,24(2) | [25] |
| 47 | Ag | Zilver | 1,304 47(3) | 125,862(3) | [26] |
| 48 | Cd | Cadmium | −0,7(2) | −68(20) | Geschat[4] |
| 49 | In | Indium | 0,383 92(6) | 37,043(6) | [35] |
| 50 | Sn | Tin | 1,112 070(2) | 107,298 4(3) | [36] |
| 51 | Sb | Antimony | 1,047 401(19) | 101,059(2) | [37] |
| 52 | Te | Telluur | 1,970 875(7) | 190,161(1) | [38] |
| 53 | 127I | Jodium | 3,059 046 5(37) | 295,153 1(4) | [39] |
| 53 | 128I | Jodium | 3,059 052(38) | 295,154(4) | [40] |
| 54 | Xe | Xenon | −0,8(2) | −77(20) | Geschat[4] |
| 55 | Cs | Cesium | 0,4715983(38) | 45,5023(4) | [41] |
| 56 | Ba | Barium | 0,144 62(6) | 13,954(6) | [42] |
| 57 | La | Lanthaan | 0,557 546(20)† | 53,795(2) | [43] |
| 58 | Ce | Cerium | 0,600 160(27)† | 57,906 7(26) | [44] |
| 59 | Pr | Praseodymium | 0,109 23(46)† | 10,539(45) | [45] |
| 60 | Nd | Neodymium | 0,097 49(33)† | 9,406(32) | [45] |
| 61 | Pm | Promethium | 0,129 | 12,45 | [46] |
| 62 | Sm | Samarium | 0,162 | 15,63 | [47] |
| 63 | Eu | Europium | 0,116(13) | 11,2(13) | [47] |
| 64 | Gd | Gadolinium | 0,212(30)† | 20,5(29) | [20] |
| 65 | Tb | Terbium | 0,131 31(80)† | 12,670(77) | [45] |
| 66 | Dy | Dysprosium | 0,015(3) | 1,45(30) | [48] |
| 67 | Ho | Holmium | 0,338 | 32,61 | [46] |
| 68 | Er | Erbium | 0,312 | 30,10 | [46] |
| 69 | Tm | Thulium | 1,029(22) | 99(3) | [49] |
| 70 | Yb | Ytterbium | −0,02 | −1,93 | Geschat[34] |
| 71 | Lu | Lutetium | 0,238 8(7)† | 23,04(7) | [50] |
| 72 | Hf | Hafnium | 0,178 0(7)† | 17,18(7) | [51] |
| 73 | Ta | Tantaal | 0,328 859(23)† | 31,730 1(22) | [20] |
| 74 | W | Wolfraam | 0,816 500(82)† | 78,780 3(80) | [20] |
| 75 | Re | Renium | 0,060 396(64)† | 5,827 3(62) | [52] |
| 76 | Os | Osmium | 1,077 661(24)† | 103,978 5(24) | [20] |
| 77 | Ir | Iridium | 1,564 057(12)† | 150,908 6(12) | [53] |
| 78 | Pt | Platina | 2,125 10(5) | 205,041(5) | [54] |
| 79 | Au | Goud | 2,308 610(25) | 222,747(3) | [55] |
| 80 | Hg | Kwik | −0,5(2) | −48(20) | Geschat[4] |
| 81 | Tl | Thallium | 0,320 053(19) | 30,880 4(19) | [56] |
| 82 | Pb | Lood | 0,356 721(2) | 34,418 3(3) | [57] |
| 83 | Bi | Bismut | 0,942 362(13) | 90,924(2) | [58] |
| 84 | Po | Polonium | 1,40(7) | 136(7) | Berekend[59] |
| 85 | At | Astaat | 2,415 78(7) | 233,087(8) | [60] |
| 86 | Rn | Radon | −0,7(2) | −68(20) | Geschat[4] |
| 87 | Fr | Francium | 0,486 | 46,89 | Geschat[61][34] |
| 88 | Ra | Radium | 0,10 | 9,648 5 | Geschat[62][34] |
| 89 | Ac | Actinium | 0,35 | 33,77 | Geschat[34] |
| 90 | Th | Thorium | 0,607 69(6)† | 58,633(6) | [63] |
| 91 | Pa | Protactinium | 0,55 | 53,03 | Geschat[64] |
| 92 | U | Uranium | 0,314 97(9)† | 30,390(9) | [65] |
| 93 | Np | Neptunium | 0,48 | 45,85 | Geschat[64] |
| 94 | Pu | Plutonium | −0,50 | −48,33 | Geschat[64] |
| 95 | Am | Americium | 0,10 | 9,93 | Geschat[64] |
| 96 | Cm | Curium | 0,28 | 27,17 | Geschat[64] |
| 97 | Bk | Berkelium | −1,72 | −165,24 | Geschat[64] |
| 98 | Cf | Californium | −1,01 | −97,31 | Geschat[64] |
| 99 | Es | Einsteinium | −0,30 | −28,60 | Geschat[64] |
| 100 | Fm | Fermium | 0,35 | 33,96 | Geschat[64] |
| 101 | Md | Mendelevium | 0,98 | 93,91 | Geschat[64] |
| 102 | No | Nobelium | −2,33 | −223,22 | Geschat[64] |
| 103 | Lr | Lawrencium | −0,31 | −30,04 | Geschat[64] |
| 111 | Rg | Röntgenium | 1,565 | 151,0 | Berekend[66] |
| 113 | Nh | Nihonium | 0,69 | 66,6 | Berekend[67] |
| 115 | Mc | Moscovium | 0,366 | 35,3 | Berekend[67] |
| 116 | Lv | Livermorium | 0,776 | 74,9 | Berekend[67] |
| 117 | Ts | Tennessine | 1,719 | 165,9 | Berekend[67] |
| 118 | Og | Oganesson | 0,080(6) | 7,72(58) | Berekend[68] |
| 119 | Uue | Ununennium | 0,662 | 63,87 | Berekend[61] |
| 120 | Ubn | Unbinilium | 0,021 | 2,03 | Berekend[69] |
| 121 | Ubu | Unbiunium | 0,57 | 55 | Berekend[34] |
Moleculen
De elektronenaffiniteiten, Eea, van een aantal moleculaire deeltjes zijn in onderstaande tabel weergegeven, gesorteerd op massa van de deeltjes. Door Rienstra-Kiracofe etal is een meer uitgebreide lijst samengesteld.[70]. De elektronenaffiniteit van de radicalen en zijn van alle moleculaire affiniteiten het nauwkeurigst bekend.
| Molecuul | Naam | Massa | Eea (eV) | Eea (kJ/mol) | Referenties |
|---|---|---|---|---|---|
| Di-atomaire deeltjes | |||||
| 16OH | Hydroxyl | 17,0068 | 1,827 6488(11) | 176,3413(2) | [71] |
| 16OD | 18,0131 | 1,825 53(4) | 176,137(5) | [72] | |
| C2 | Dikoolstof | 24,0000 | 3,269(6) | 315,4(6) | [73] |
| CN | Cyanoradicaal | 26,0067 | 3,862(4) | 372,6263 | [74] |
| BO | Boor(II)oxide | 26,8100 | 2,508(8) | 242,0(8) | [75] |
| NO | Stikstofmonoxide | 30,0057 | 0,026(5) | 2,5(5) | [76] |
| O2 | Dizuurstof | 31,9980 | 0,450(2) | 43,42(20) | [77] |
| 32SH | Sulfhydryl | 32,9799 | 2,314 7283(17) | 223,3373(2) | [78] |
| F2 | Difluor | 37,9968 | 3,08(10) | 297(10) | [79] |
| LiCl | Lithiumchloride | 42,3940 | 0,593(10) | 57,2(10) | [80] |
| Cl2 | Dichloor | 70,9060 | 2,35(8) | 227(8) | [79] |
| FeO | IJzer(II)oxide | 71,8440 | 1,4950(5) | 144,25(6) | [81] |
| Br2 | Dibroom | 159,8080 | 2,53(8) | 244(8) | [79] |
| IBr | joodmonobromide | 206,8085 | 2,512(3) | 242,4(4) | [82] |
| I2 | Di-jood | 253,8090 | 2,524(5) | 243,5(5) | [83] |
| Tri-atomaire deeltjes | |||||
| NO2 | Stikstofdioxide | 46,0047 | 2,273(5) | 219,3(5) | [84] |
| O3 | Ozon | 47,9970 | 2,1028(25) | 202,89(25) | [85] |
| SO2 | Zwaveldioxide | 63,9701 | 1,107(8) | 106,8(8) | [86] |
| Grotere poly-atomaire deeltjes | |||||
| CH2CHO | Vinyloxy | 43,0225 | 1,8248(+2-6) | 176,07(+3-7) | [87] |
| C6H6 | Benzeen | 78,0470 | −0,70(14) | −68(14) | [88] |
| C6H4O2 | 1,4-Benzochinon | 108,0293 | 1,860(5) | 179,5(6) | [89] |
| BF3 | Boortrifluoride | 67,8062 | 2,65(10) | 256(10) | [90] |
| HNO3 | Salpeterzuur | 63,0115 | 0,57(15) | 55(14) | [79] |
| CH3NO2 | Nitromethaan | 61,0282 | 0,172(6) | 16,6(6) | [91] |
| POCl3 | Fosforylchloride | 153,3318 | 1,41(20) | 136(20) | [92] |
| SF6 | Zwavelhexafluoride | 145,9625 | 1,03(5) | 99,4(49) | [93] |
| C2(CN)4 | Tetracyano-etheen | 128,0268 | 3,17(20) | 306(20) | [94] |
| WF6 | Wolfraam(VI)fluoride | 297,8304 | 3,5(1) | 338(10) | [95] |
| UF6 | Uraniumhexafluoride | 352,0204 | 5,06(20) | 488(20) | [96] |
| C60 | Buckminsterfullereen | 720,0000 | 2,6835(6) | 258,92(6) | [97] |
Tweede en derde electronenaffiniteit
Ter vergelijking is ook de eerste elektronenaffiniteit voor de vermelde ionen opgenomen.
| Z | Element | Name | Electron affinity (eV) | Electron affinity (kJ/mol) | Referentie |
|---|---|---|---|---|---|
| 7 | N | Stikstof | −0,07 | −6,8 | [4] |
| 7 | N− | -6,98 | -673 | [98] | |
| 7 | N2− | -11,09 | -1070 | [98] | |
| 8 | 16O | Zuurstof | 1,461 112 97(9) | 140,975 970(9) | [8] |
| 8 | 17O | 1,461 108(4) | 140,975 5(3) | [9] | |
| 8 | O− | -7.71 | -744 | [98] | |
| 15 | P | Fosfor | 0,746 609(11) | 72,037(1) | [15] |
| 15 | P− | -4,85 | -468 | [98] | |
| 15 | P2− | -9,18 | -886 | [98] | |
| 16 | 32S | Zwavel | 2,077 104 2(6) | 200,410 1(1) | [14] |
| 16 | 34S | 2,077 104 5(12) | 200,410 1(2) | [16] | |
| 16 | S− | -4,73 | -456 | [98] | |
| 33 | 75As | Arseen | 0,804 486(3) | 77,621 1(3) | [1] |
| 33 | As− | -4,51 | -435 | [98] | |
| 33 | As2− | -8,31 | -802 | [98] | |
| 34 | Se | Seleen | 2,020 604 7(12) | 194,958 7(2) | [29] |
| 34 | Se− | -4,25 | -410 | [98] |
Dit artikel of een eerdere versie ervan is een (gedeeltelijke) vertaling van het artikel Electron affinity (data page) op de Engelstalige Wikipedia, dat onder de licentie Creative Commons Naamsvermelding/Gelijk delen valt. Zie de bewerkingsgeschiedenis aldaar.
- ↑ a b c Blondel, C.; Drag, C. (2025). Quantum Offset of Velocity Imaging-Based Electron Spectrometry and the Electron Affinity of Arsenic. Phys. Rev. Lett. 134, pag.: 043001. DOI: 10.1103/PhysRevLett.134.043001.
- ↑ Lykke, K.R.; Murray, K.K.; Lineberger, W.C. (1991). Threshold Photodetachment of H−. Phys. Rev. A 43 (11), pag.: 6104–7. PMID: 9904944. DOI: 10.1103/PhysRevA.43.6104.
- ↑ Beyer M. & Merkt F. (2018). "Communication: Heavy-Rydberg states of HD and the electron affinity of the deuterium atom". J. Chem. Phys. 149, 031102 DOI:10.1063/1.5043186
- ↑ a b c d e f g h i j k l m n Bratsch, S.G.; Lagowski, J.J. (1986). Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K.. Polyhedron 5 (11), pag.: 1763–1770. DOI: 10.1016/S0277-5387(00)84854-8.
- ↑ Haeffler, G.; Hanstorp, D.; Kiyan, I.; Klinkmüller, A.E.; Ljungblad, U.; Pegg, D.J. (1996). Electron affinity of Li: A state-selective measurement. Phys. Rev. A 53 (6), pag.: 4127–31. PMID: 9913377. DOI: 10.1103/PhysRevA.53.4127.
- ↑ a b Scheer, M.; Bilodeau, R.C.; Haugen, H.K. (1998). Negative ion of boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80 (12), pag.: 2562–65. DOI: 10.1103/PhysRevLett.80.2562.
- ↑ Bresteau, D.; Drag, C.; Blondel, C. (2016). Isotope shift of the electron affinity of carbon measured by photodetachment microscopy. Phys. Rev. A 93 (1), pag.: 013414. DOI: 10.1103/PhysRevA.93.013414.
- ↑ a b Kristiansson, M.K.; Chartkunchand, K.; Eklund, G. (2022). High-precision electron affinity of oxygen. Nat Commun 13 (1), pag.: 5906. PMID: 36207329. PMC: 9546871. DOI: 10.1038/s41467-022-33438-y.
- ↑ a b c Blondel, C.; Delsart, C.; Valli, C.; Yiou, S.; Godefroid, M.R.; Van Eck, S. (2001). Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O−, and the hyperfine structure of 17O−.. Phys. Rev. A 64 (5), pag.: 052504. DOI: 10.1103/PhysRevA.64.052504.
- ↑ a b Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R. (1989). High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams. Phys. Rev. A 40 (7), pag.: 3698–3701. PMID: 9902584. DOI: 10.1103/PhysRevA.40.3698.
- ↑ Blondel, C.; Delsart, C.; Goldfarb, F. (2001). Electron spectrometry at the μeV level and the electron affinities of Si and F. Journal of Physics B 34, pag.: L281–88. DOI: 10.1088/0953-4075/34/9/101.
- ↑ Hotop, H.; Lineberger, W.C. (1985). Binding energies in atomic negative ions. II. J. Phys. Chem. Ref. Data 14 (3), pag.: 731. DOI: 10.1063/1.555735.
- ↑ Scheer, M.; Bilodeau, R.C.; Thøgersen, J.; Haugen, H.K. (1998). Threshold Photodetachment of Al−: Electron Affinity and Fine Structure. Phys. Rev. A 57 (3), pag.: R1493–96. DOI: 10.1103/PhysRevA.57.R1493.
- ↑ a b c Chaibi, W.; Peláez, R.J.; Blondel, C.; Drag, C.; Delsart, C. (2010). Effect of a magnetic field in photodetachment microscopy. Eur. Phys. J. D 58 (1), pag.: 29. DOI: 10.1140/epjd/e2010-00086-7.
- ↑ a b Peláez, R.J., Blondel, C., Vandevraye, M., Drag, C., Delsart, C. (2011). Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus. J. Phys. B: At. Mol. Opt. Phys. 44 (19). DOI: 10.1088/0953-4075/44/19/195009.
- ↑ a b Carette, T.; Drag, C.; Scharf, O.; Blondel, C.; Delsart, C.; Fischer, C. (2000). F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory. Phys. Rev. A 81, pag.: 042522. DOI: 10.1103/PhysRevA.81.042522.
- ↑ Berzinsh, U.; Gustafsson, M.; Hanstorp, D.; Klinkmüller, A.; Ljungblad, U.; Martensson-Pendrill, A.M. (1995). Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51 (1), pag.: 231–238. PMID: 9911578. DOI: 10.1103/PhysRevA.51.231.
- ↑ Andersson, K.T.; Sandstrom, J.; Kiyan, I.Y.; Hanstorp, D.; Pegg, D.J. (2000). Measurement of the electron affinity of potassium. Phys. Rev. A 62 (2), pag.: 022503. DOI: 10.1103/PhysRevA.62.022503.
- ↑ Petrunin, V.V.; Andersen, H.H.; Balling, P.; Andersen, T. (1996). Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting. Phys. Rev. Lett. 76 (5), pag.: 744–47. PMID: 10061539. DOI: 10.1103/PhysRevLett.76.744.
- ↑ a b c d e f g h i Ning, Chuangang; Lu, Yuzhu (2022). Electron Affinities of Atoms and Structures of Atomic Negative Ions. J. Phys. Chem. Ref. Data 51 (2), pag.: 021502. DOI: 10.1063/5.0080243.
- ↑ Tang, R.; Fu, X.; Ning, C. (2018). Accurate electron affinity of Ti and fine structures of its anions. J. Chem. Phys. 149 (13), pag.: 134304. PMID: 30292212. DOI: 10.1063/1.5049629.
- ↑ Fu, X.; Luo, Z.; Chen, X.; Li, J.; Ning, C. (2016). Accurate electron affinity of V and fine-structure splittings of V− via slow-electron velocity-map imaging. J. Chem. Phys. 145 (16), pag.: 164307. PMID: 27802620. DOI: 10.1063/1.4965928.
- ↑ Chen, X.; Luo, Z.; Li, J.; Ning, C. (2016). Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions. Sci. Rep. 6, pag.: 24996. PMID: 27138292. PMC: 4853736. DOI: 10.1038/srep24996.
- ↑ Chen, X.; Ning, C. (2016). Accurate electron affinity of Co and fine-structure splittings of Co− via slow-electron velocity-map imaging. Phys. Rev. A 93 (5), pag.: 052508. DOI: 10.1103/PhysRevA.93.052508.
- ↑ a b c Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H.K. (1998). Laser spectroscopic measurements of binding energies and fine-structure splittings of Co−, Ni−, Rh−, and Pd−.. Phys. Rev. A 58 (3), pag.: 2051–62. DOI: 10.1103/PhysRevA.58.2051.
- ↑ a b Bilodeau, R.C.; Scheer, M.; Haugen, H.K. (1998). Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr−, Mo−, Cu−, and Ag−. Journal of Physics B 31, pag.: 3885–91. DOI: 10.1088/0953-4075/31/17/013.
- ↑ Tang, R.; Fu, X.; Lu, Y.; Ning, C. (2020). Accurate electron affinity of Ga and fine structures of its anions. J. Chem. Phys. 152 (11), pag.: 114303. PMID: 32199425. DOI: 10.1063/1.5144962.
- ↑ Bresteau, D.; Babilotte, Ph.; Drag, C.; Blondel, C. (2015). Intra-cavity photodetachment microscopy and the electron affinity of germanium. J. Phys. B: At. Mol. Opt. Phys. 48 (12), pag.: 125001. DOI: 10.1088/0953-4075/48/12/125001.
- ↑ a b Vandevraye, M.; Drag, C.; Blondel, C. (2012). Electron affinity of selenium measured by photodetachment microscopy. Phys. Rev. A 85 (1), pag.: 015401. DOI: 10.1103/PhysRevA.85.015401.
- ↑ Frey, P.; Breyer, F.; Hotop, H. (1978). High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics BJ. Phys. B: At. Mol. Phys. Chinese Journal of Chemical Physics 11, pag.: L589–94. DOI: 10.1088/0022-3700/11/19/005.
- ↑ Andersen, H.H.; Petrunin, V.V.; Kristensen, P.; Andersen, T. (1997). Structural properties of the negative strontium ion: Binding energy and fine-structure splitting. Phys. Rev. A 55 (4), pag.: 3247–49. DOI: 10.1103/PhysRevA.55.3247.
- ↑ Fu, X.; Li, J.; Luo, Z.; Chen, X.; Ning, C. (2017). Precision measurement of electron affinity of Zr and fine structures of its negative ions. Journal of Chemical Physics J. Chem. Phys. The Journal of Chemical Physics 147 (6), pag.: 064306. PMID: 28810756. DOI: 10.1063/1.4986547.
- ↑ Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93, 020501(R) DOI:10.1103/PhysRevA.93.020501
- ↑ a b c d e f CRC Handbook of Chemistry and Physics 92nd Edn. (2011–2012); W. M. Haynes. Boca Raton, FL: CRC Press. "Section 10, Atomic, Molecular, and Optical Physics; Electron Affinities".
- ↑ Walter, C.W.; Gibson, N.D.; Carman, D.J.; Li, Y.-G.; Matyas, D.J. (2010). Electron affinity of indium and the fine structure of In− measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 82 (3), pag.: 032507. DOI: 10.1103/PhysRevA.82.032507.
- ↑ Vandevraye, M.; Drag, C.; Blondel, C. (2013). Electron affinity of tin measured by photodetachment microscopy. Journal of Physics B: Atomic, Molecular and Optical Physics 46 (12), pag.: 125002. DOI: 10.1088/0953-4075/46/12/125002.
- ↑ Scheer, M.; Haugen, H.K.; Beck, D.R. (1997). Single- and Multiphoton Infrared Laser Spectroscopy of Sb−: A Case Study. Phys. Rev. Lett. 79 (21), pag.: 4104–7. DOI: 10.1103/PhysRevLett.79.4104.
- ↑ Haeffler, G.; Klinkmüller, A.E.; Rangell, J.; Berzinsh, U.; Hanstorp, D. (1996). The electron affinity of tellurium. Z. Phys. D 38 (3), pag.: 211. DOI: 10.1007/s004600050085.
- ↑ Peláez, R.J.; Blondel, C.; Delsart, C.; Drag, C. (2009). Pulsed photodetachment microscopy and the electron affinity of iodine. J. Phys. B 42 (12), pag.: 125001. DOI: 10.1088/0953-4075/42/12/125001.
- ↑ Rothe, S.; Sundberg, J.; Welander, J.; Chrysalidis, K.; Goodacre, T. (2017). D., Fedosseev V., ... & Kron T. (2017). Laser photodetachment of radioactive 128I−.. J. Phys. G: Nucl. Part. Phys. 44, pag.: 104003. DOI: 10.1088/1361-6471/aa80aa.
- ↑ Navarro Navarrete, José E.; Nichols, Miranda; Ringvall-Moberg, Annie; Welander, Jakob; Lu, Di; Leimbach, David; Kristiansson, Moa K.; Eklund, Gustav; Raveesh, Meena; Chulkov, Ruslan; Zhaunerchyk, Vitali; Hanstorp, Dag (21 februari 2024). High-resolution measurement of the electron affinity of cesium. Physical Review A 109 (2). ISSN: 2469-9926. DOI: 10.1103/PhysRevA.109.022812.
- ↑ Petrunin, V.V.; Volstad, J.D.; Balling, P.; Kristensen, K.; Andersen, T. (1995). Resonant Ionization Spectroscopy of Ba−: Metastable and Stable Ions. Phys. Rev. Lett. 75 (10), pag.: 1911–14. PMID: 10059160. DOI: 10.1103/PhysRevLett.75.1911.
- ↑ Blondel, C. (2020). Comment on "Measurement of the electron affinity of the lanthanum atom". Phys. Rev. A 101 (1), pag.: 016501. DOI: 10.1103/PhysRevA.101.016501.
- ↑ Fu, X.-X.; Tang, R.-L.; Lu, Y.-Z.; Ning, C.-G. (2020). Accurate electron affinity of atomic cerium and excited states of its anion. Chin. Phys. B 29 (7), pag.: 073201. DOI: 10.1088/1674-1056/ab90e9.
- ↑ a b c Fu, X.; Lu, Y.; Tang, R.; Ning, C. (2020). Electron affinity measurements of lanthanide atoms: Pr, Nd, and Tb. Phys. Rev. A 101 (2), pag.: 022502. DOI: 10.1103/PhysRevA.101.022502.
- ↑ a b c Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). Resonances in low-energy electron elastic cross sections for lanthanide atoms. Phys. Rev. A 79 (1), pag.: 012714. DOI: 10.1103/PhysRevA.79.012714.
- ↑ a b Cheng, S.B.; Castleman, A. W. Jr (2015). Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 5, pag.: 12414. PMID: 26198741. PMC: 4510523. DOI: 10.1038/srep12414.
- ↑ Nadeau, M. J.; Garwan, M. A.; Zhao, X. L.; Litherland, A. E. (1997). A negative ion survey; towards the completion of the periodic table of the negative ions. Nuclear Instruments and Methods in Physics Research B 123 (1–4), pag.: 521–526. DOI: 10.1016/S0168-583X(96)00749-5.
- ↑ Davis, V.T.; Thompson, J.S. (2001). Measurement of the electron affinity of thulium. Phys. Rev. A 65 (1), pag.: 010501. DOI: 10.1103/PhysRevA.65.010501.
- ↑ Fu, X.X.; Tang, R.L.; Lu, Y.Z.; Ning, C.G. (2019). Measurement of electron affinity of atomic lutetium via the cryo-SEVI Method. Chinese Journal of Chemical Physics 32 (2), pag.: 187. DOI: 10.1063/1674-0068/cjcp1812293.
- ↑ Tang R., Chen X., Fu X., Wang H. and Ning C. (2018). Electron affinity of the hafnium atom. Phys. Rev. A 98 020501(R) DOI:10.1103/PhysRevA.98.020501.
- ↑ Chen, X.L.; Ning, C.G. (2017). Observation of Rhenium Anion and Electron Affinity of Re.. J. Phys. Chem. Lett. 8 (12), pag.: 2735–2738. PMID: 28581753. DOI: 10.1021/acs.jpclett.7b01079.
- ↑ Lu Y., Zhao J., Tang R., Fu X. & Ning C. (2020). "Measurement of electron affinity of iridium atom and photoelectron angular distributions of iridium anion". J. Chem. Phys. 152, 034302 DOI:10.1063/1.5134535
- ↑ Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. (1999). Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law. Phys. Rev. A 61 (1), pag.: 012505. DOI: 10.1103/PhysRevA.61.012505.
- ↑ Andersen, T.; Haugen, H.K.; Hotop, H. (1999). Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 28 (6), pag.: 1511. DOI: 10.1063/1.556047.
- ↑ Walter, C.W.; Gibson, N.D.; Spielman, S.E. (2020). Electron affinity of thallium measured with threshold spectroscopy. Phys. Rev. A 101 (5), pag.: 052511. DOI: 10.1103/PhysRevA.101.052511.
- ↑ Bresteau, D.; Drag, C.; Blondel, C. (2019). Electron affinity of lead. J. Phys. B: At. Mol. Opt. Phys. 52 (6), pag.: 065001. DOI: 10.1088/1361-6455/aaf685.
- ↑ Bilodeau, R.C.; Haugen, H.K. (2001). Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy. Phys. Rev. A 64 (2), pag.: 024501. DOI: 10.1103/PhysRevA.64.024501.
- ↑ Junqin, Li; Zilong, Zhao; Martin, Andersson; Xuemei, Zhang; Chongyang, Chen (2012). Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B: At. Mol. Opt. Phys. 45 (16), pag.: 165004. DOI: 10.1088/0953-4075/45/16/165004.
- ↑ Leimbach, D. (2020). The electron affinity of astatine. Nat. Commun. 11 (1), pag.: 3824. PMID: 32733029. PMC: 7393155. DOI: 10.1038/s41467-020-17599-2.
- ↑ a b Landau, A.; Eliav, E.; Ishikawa, Y.; Kaldor, U. (2001). Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119). J. Chem. Phys. 115 (6), pag.: 2389. DOI: 10.1063/1.1386413.
- ↑ Andersen, T. (2004). Atomic negative ions: Structure, dynamics and collisions. Physics Reports 394 (4–5), pag.: 157–313. DOI: 10.1016/j.physrep.2004.01.001.
- ↑ Tang R., Si R., Fei Z., Fu X., Lu Y., Brage T., Liu H., Chen C. & Ning C. (2019). "Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th−". Phys. Rev. Lett. 123, 203002 DOI:10.1103/PhysRevLett.123.203002
- ↑ a b c d e f g h i j k l Guo, Y.; Whitehead, M.A. (1989). Electron affinities of alkaline-earth element calculated with the local-spin-density-functional theory.. Physical Review A 40 (1), pag.: 28–34. PMID: 9901864. DOI: 10.1103/PhysRevA.40.28.
- ↑ Tang R., Lu Y., Liu H. & Ning C. (2021). "Electron affinity of uranium and bound states of opposite parity in its anion". Phys. Rev. A 103, L050801 DOI:10.1103/PhysRevA.103.L050801
- ↑ Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi (2015). Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, pag.: 518–550. DOI: 10.1016/j.nuclphysa.2015.06.017.
- ↑ a b c d Fully relativistic ab initio studies of superheavy elements. www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. Gearchiveerd op 15 January 2018. Geraadpleegd op 15 January 2018.
- ↑ Guo, Yangyang, Pašteka, Lukáš F., Eliav, Ephraim, Borschevsky, Anastasia (2021). Advances in Quantum Chemistry, "Chapter 5: Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method", 107–123. ISBN 978-0-12-823546-1.
- ↑ Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U. (2013). Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues. Phys. Rev. A 87 (2): 022502–1–8. DOI: 10.1103/PhysRevA.87.022502.
- ↑ Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002). Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem. Rev. 102 (1), pag.: 231–282. PMID: 11782134. DOI: 10.1021/cr990044u.
- ↑ Goldfarb, F.; Drag, C.; Chaibi, W.; Kröger, S.; Blondel, C.; Delsart, C. (2005). Photodetachment microscopy of the P, Q, and R branches of the OH−(v=0) to OH(v=0) detachment threshold. J. Chem. Phys. 122 (1), pag.: 014308. PMID: 15638660. DOI: 10.1063/1.1824904.
- ↑ Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. (1982). OH− and OD− threshold photodetachment. J. Chem. Phys. 77 (3), pag.: 1153. DOI: 10.1063/1.443980.
- ↑ Ervin, K.M.; Lineberger, W.C. (1991). Photoelectron spectra of and . J. Phys. Chem. 95 (3), pag.: 1167. DOI: 10.1021/j100156a026.
- ↑ Bradforth, Stephen E.; Kim, Eun Ha; Arnold, Don W.; Neumark, Daniel M. (15 januari 1993). Photoelectron spectroscopy of CN−, NCO−, and NCS−. The Journal of Chemical Physics 98 (2), pag.: 800–810 (AIP Publishing). ISSN: 0021-9606. DOI: 10.1063/1.464244.
- ↑ Wenthold, P.G.; Kim, J.B.; Jonas, K.-L.; Lineberger, W.C. (1997). An Experimental and Computational Study of the Electron Affinity of Boron Oxide. J. Phys. Chem. A 101 (24), pag.: 4472. DOI: 10.1021/jp970645u.
- ↑ Travers, M.J.; Cowles, D.C.; Ellison, G.B. (1989). Reinvestigation of the electron affinities of O2 and NO. Chem. Phys. Lett. 164 (5), pag.: 449. DOI: 10.1016/0009-2614(89)85237-6.
- ↑ Schiedt, J.; Weinkauf, R. (1995). Spin-orbit coupling in the anion. Z. Naturforsch. A 50 (11), pag.: 1041. DOI: 10.1515/zna-1995-1110.
- ↑ Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C. (2006). High precision measurement of the 32SH electron affinity by laser detachment microscopy. J. Mol. Spectrosc. 239 (1), pag.: 11. DOI: 10.1016/j.jms.2006.05.012.
- ↑ a b c d Janousek, Bruce K.; Brauman, John I. (1979). Gas Phase Ion Chemistry, Electron affinities 2, pag.: 53 (Academic Press).
- ↑ Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C. (1986). Electron affinities of the alkali halides and the structure of their negative ions. J. Chem. Phys. 85 (5), pag.: 2368. DOI: 10.1063/1.451091.
- ↑ Kim, J.B.; Weichman, M.L.; Neumark, D.M. (2015). Low-lying states of FeO and FeO− by slow photoelectron spectroscopy. Mol. Phys. 113 (15–16), pag.: 2105. DOI: 10.1080/00268976.2015.1005706.
- ↑ Sheps, L.; Miller, E.M.; Lineberger, W.C. (2009). Photoelectron spectroscopy of small IBr−(CO2)n(n=0–3) cluster anions. J. Chem. Phys. 131 (6), pag.: 064304. PMID: 19691385. DOI: 10.1063/1.3200941.
- ↑ Zanni, M.T.; Taylor, T.R.; Greenblatt, B.J.; Soep, B.; Neumark, D.M. (1997). Characterization of the anion ground state using conventional and femtosecond photoelectron spectroscopy. J. Chem. Phys. 107 (19), pag.: 7613. DOI: 10.1063/1.475110.
- ↑ Ervin, K.M.; Ho, J.; Lineberger, W.C. (1988). Ultraviolet photoelectron spectrum of nitrite anion. J. Phys. Chem. 92 (19), pag.: 5405. DOI: 10.1021/j100330a017.
- ↑ Novick, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C. (1979). Laser photoelectron, photodetachment, and photodestruction spectra of O3. J. Chem. Phys. 70 (6), pag.: 2652. DOI: 10.1063/1.437842.
- ↑ Nimlos, Mark R.; Ellison, G. Barney (1986). Photoelectron spectroscopy of sulfur-containing anions , and ). J. Phys. Chem. 90 (12), pag.: 2574. DOI: 10.1021/j100403a007.
- ↑ Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I. (1984). Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate. J. Chem. Phys. 81 (11), pag.: 4883. DOI: 10.1063/1.447515., gevonden via: Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002). Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem. Rev. 102 (1), pag.: 231–282. PMID: 11782134. DOI: 10.1021/cr990044u.
- ↑ Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. (1995). Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes. J. Phys. Chem. 99 (21), pag.: 8843. DOI: 10.1021/j100021a060.
- ↑ Schiedt, J.; Weinkauf, R. (1999). Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system. J. Chem. Phys. 110 (1), pag.: 304. DOI: 10.1063/1.478066.
- ↑ Page, F. M.; Goode, G. C. (1969). Negative ions and the magnetron (John Wiley & Sons). NB.: According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.
- ↑ Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M. (2009). Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state. J. Chem. Phys. 130 (7), pag.: 074307. PMID: 19239294. DOI: 10.1063/1.3076892.
- ↑ Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Reck, G.P. (1976). Negative ions from phosphorus halides due to cesium charge exchange. J. Chem. Phys. 65 (2), pag.: 565. DOI: 10.1063/1.433109.
- ↑ Troe, J.; Miller, T.M.; Viggiano, A.A. (2012). Communication:Revised electron affinity of SF6 from kinetic data. J. Chem. Phys. 136 (2), pag.: 121102. PMID: 22462826. DOI: 10.1063/1.3698170.
- ↑ Chowdhury, S.; Kebarle, P. (1986). Electron affinities of di- and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria. J. Am. Chem. Soc. 108 (18), pag.: 5453. DOI: 10.1021/ja00278a014.
- ↑ George, P.M.; Beauchamp, J.L. (1979). The electron and fluoride affinities of tungsten hexafluoride by ion cyclotron resonance spectroscopy. Chem. Phys. 36 (3), pag.: 345. DOI: 10.1016/0301-0104(79)85018-1.
- ↑ NIST chemistry webbook, gevonden via: Borshchevskii, A.Ya.; Boltalina, O.V.; Sorokin, I.D.; Sidorov, L.N. (1988). Thermochemical quantities for gas-phase iron, uranium, and molybdenum fluorides, and their negative ions. J. Chem. Thermodyn. 20 (5), pag.: 523. DOI: 10.1016/0021-9614(88)90080-8.
- ↑ Huang, Dao-Ling; Dau, Phuong Diem; Liu, Hong-Tao; Wang, Lai-Sheng (2014). High-resolution photoelectron imaging of cold anions and accurate determination of the electron affinity of C60. J. Chem. Phys. 140 (22), pag.: 224315. PMID: 24929396. DOI: 10.1063/1.4881421.
- ↑ a b c d e f g h i Rayner-Canham Appendix 5: Data summarised from, and see also, J. E. Huheey et al., Inorganic Chemistry, 4th ed. (New York: HarperCollins, 1993) [1]