There are several posts here about floating point numbers and their nature. It is clear that comparing floats and doubles must always be done cautiously. Asking for equality has also been discussed and the recommendation is clearly to stay away from it.
But what if there is a direct assignement:
double a = 5.4;
double b = a;
assumg a is any non-NaN value - can a == b ever be false?
It seems that the answer is obviously no, yet I can't find any standard defining this behaviour in a C++ environment. IEEE-754 states that two floating point numbers with equal (non-NaN) bitset patterns are equal. Does it now mean that I can continue comparing my doubles this way without having to worry about maintainability? Do I have to worried about other compilers / operating systems and their implementation regarding these lines? Or maybe a compiler that optimizes some bits away and ruins their equality?
I wrote a little program that generates and compares non-NaN random doubles forever - until it finds a case where a == b yields false. Can I compile/run this code anywhere and anytime in the future without having to expect a halt? (ignoring endianness and assuming sign, exponent and mantissa bit sizes / positions stay the same).
#include <iostream>
#include <random>
struct double_content {
std::uint64_t mantissa : 52;
std::uint64_t exponent : 11;
std::uint64_t sign : 1;
};
static_assert(sizeof(double) == sizeof(double_content), "must be equal");
void set_double(double& n, std::uint64_t sign, std::uint64_t exponent, std::uint64_t mantissa) {
double_content convert;
memcpy(&convert, &n, sizeof(double));
convert.sign = sign;
convert.exponent = exponent;
convert.mantissa = mantissa;
memcpy(&n, &convert, sizeof(double_content));
}
void print_double(double& n) {
double_content convert;
memcpy(&convert, &n, sizeof(double));
std::cout << "sign: " << convert.sign << ", exponent: " << convert.exponent << ", mantissa: " << convert.mantissa << " --- " << n << '\n';
}
int main() {
std::random_device rd;
std::mt19937_64 engine(rd());
std::uniform_int_distribution<std::uint64_t> mantissa_distribution(0ull, (1ull << 52) - 1);
std::uniform_int_distribution<std::uint64_t> exponent_distribution(0ull, (1ull << 11) - 1);
std::uniform_int_distribution<std::uint64_t> sign_distribution(0ull, 1ull);
double a = 0.0;
double b = 0.0;
bool found = false;
while (!found){
auto sign = sign_distribution(engine);
auto exponent = exponent_distribution(engine);
auto mantissa = mantissa_distribution(engine);
//re-assign exponent for NaN cases
if (mantissa) {
while (exponent == (1ull << 11) - 1) {
exponent = exponent_distribution(engine);
}
}
//force -0.0 to be 0.0
if (mantissa == 0u && exponent == 0u) {
sign = 0u;
}
set_double(a, sign, exponent, mantissa);
b = a;
//here could be more (unmodifying) code to delay the next comparison
if (b != a) { //not equal!
print_double(a);
print_double(b);
found = true;
}
}
}
using Visual Studio Community 2017 Version 15.9.5