De goniometrische basisfuncties zijn op diverse manieren met elkaar verbonden. Dit artikel geeft een lijst met goniometrische gelijkheden.
Directe onderlinge relaties


Dit is de grondformule van de goniometrie en is gebaseerd op de stelling van Pythagoras. De tweede en derde zijn hieruit af te leiden door te delen door het kwadraat van de cosinus en sinus.


Periodiciteit, symmetrie en verschuivingen

Gelijkheden voor de som en het verschil van twee hoeken

Gelijkheden voor de dubbele hoek

Derdehoekregel

Deze formules worden ook naar Carnot genoemd.

Met de t-formules, zo genoemd vanwege de substitutie:

zijn vergelijkingen met goniometrische identiteiten in
op te lossen door ze eerst te schrijven als functie van
en later weer terug te transformeren naar
. Er geldt:




Gelijkheden voor de halve hoek

Deze formules zijn naar Thomas Simpson genoemd.

Deling van de eerste door de tweede formule geeft


Nog twee merkwaardige gelijkheden

